Changes the location associated with an existing time series. This will update
the following fields in monitor$meta: longitude, latitude,
locationID and deviceDeploymentID as well as the column name of this
time series in monitor$data.
monitor_move(
monitor,
id = NULL,
longitude = NULL,
latitude = NULL,
algorithm = NULL,
precision = 10
)mts_monitor object.
deviceDeploymentID for a single time series found in monitor.
(Optional if monitor contains only a single time series.)
New longitude of the time series.
New latitude of the time series.
Algorithm to use – either "geohash" or "digest".
precision argument used when encoding with "geohash".
A mts_monitor object representing a single time series. (A list with
meta and data dataframes.)
If another time series exists at the the specified location, monitor_combine()
will be used to join them into a single time series. Combination will be performed
with replaceMeta = TRUE, overlapStrategy = "replace all" to ensure that
data and metadata associated with the later time series take precedence.
A typical use case would involve a monitor whose location metadata was update/corrected after data collection has already started. This will result in two separate time series that need to be combined.
Arguments algorithm and precision are passed on to
createLocationID so that the new locationID
will match those found in monitor. If algorithm = NULL, the
algorithm and precision will be chosen to match those used to
create mon$meta$locationID.
library(AirMonitor)
# Move Carmel Vallely monitor over a bit
names(Carmel_Valley$data)
#> [1] "datetime" "a9572a904a4ed46d_840060530002"
Carmel_Valley$meta %>%
dplyr::select(longitude, latitude, locationID, deviceDeploymentID) %>%
dplyr::glimpse()
#> Rows: 1
#> Columns: 4
#> $ longitude <dbl> -121.7333
#> $ latitude <dbl> 36.48187
#> $ locationID <chr> "a9572a904a4ed46d"
#> $ deviceDeploymentID <chr> "a9572a904a4ed46d_840060530002"
moved_monitor <- monitor_move(
Carmel_Valley,
id = Carmel_Valley$meta$deviceDeploymentID,
longitude = Carmel_Valley$meta$longitude + 0.001,
latitude = Carmel_Valley$meta$latitude + 0.001
)
names(moved_monitor$data)
#> [1] "datetime" "0d72cd782d6a0dd5_840060530002"
moved_monitor$meta %>%
dplyr::select(longitude, latitude, locationID, deviceDeploymentID) %>%
dplyr::glimpse()
#> Rows: 1
#> Columns: 4
#> $ longitude <dbl> -121.7323
#> $ latitude <dbl> 36.48287
#> $ locationID <chr> "0d72cd782d6a0dd5"
#> $ deviceDeploymentID <chr> "0d72cd782d6a0dd5_840060530002"