This function acts similarly to dplyr::pull() working on mts$meta or mts$data. Data are returned as a simple array. Data are pulled from whichever dataframe contains var.

mts_pull(mts = NULL, var = NULL)

Arguments

mts

mts object.

var

A variable name found in the meta or data dataframe of the incoming mts time series object.

Value

An array of values.

Examples

library(MazamaTimeSeries)

# Metadata
example_mts %>%
  mts_pull("communityRegion") %>%
  table() %>%
  sort(decreasing = TRUE)
#> .
#> Alhambra/Monterey Park               El Monte 
#>                     33                      5 

# Data for a specific ID
example_mts %>%
  mts_pull("da4cadd2d6ea5302_4686")
#>   [1]  14.663333  15.401333  15.686833  15.296000  15.114833  17.788833
#>   [7]  21.004833  18.522167  17.653000  15.810500  13.441833  10.807167
#>  [13]  10.745167  11.496500  11.156333  10.639333   8.921000   6.796000
#>  [19]   6.370833   5.988500   8.295833   9.485333  11.110000  13.480000
#>  [25]  13.868000  13.331500  13.064667  12.548500  12.192333  15.689500
#>  [31]  15.849833  16.603333  17.109167  16.262833  16.695167  13.579000
#>  [37]  10.796000   8.054333   9.215833   9.836500   9.688333  10.770667
#>  [43]  13.091667  12.671333  15.421500  18.056833  16.396667  14.634500
#>  [49]  13.701500  10.981500   9.594667  14.201333  15.973500  14.861333
#>  [55]  15.208000  15.315167  16.539500  19.770333  19.909500  15.702167
#>  [61]  16.110667  14.887167  14.322333  21.644667  15.260500  13.226833
#>  [67]  13.733000  13.754000  14.940500  16.907667  24.405333  17.149667
#>  [73]  12.242333  11.167500  11.962000  11.255333  11.068500  11.473167
#>  [79]  11.654667  11.577333  13.287500  15.133667  16.046167  16.543167
#>  [85]  17.240500  16.374833  16.127333  16.121000  14.960167  16.892000
#>  [91]  18.983000  21.372000  59.664500 172.851000 212.026333 145.572667
#>  [97]  93.067667  65.081000  48.351000  45.551500  53.586000  75.637667
#> [103] 110.198833 125.826167 118.064667  83.203000  37.408333  28.654667
#> [109]  20.489000  17.698000  17.750833  16.996667  14.683833  13.601333
#> [115]  15.170500  19.678000  23.070833  23.320000  20.673833  20.280667
#> [121]  20.995667  16.947833  16.298833  25.653500  31.316500  32.088167
#> [127]  33.678000  34.094500  36.458667  33.557500  33.172500  32.573000
#> [133]  32.464167  35.256333  33.378667  22.659833  17.496667  16.681667
#> [139]  19.408667  21.635000  26.086667  29.953500  34.675500  36.420000
#> [145]  24.230333  22.273000  22.163000  22.780667  22.128833  24.421833
#> [151]  21.524667  16.482667  16.653167  16.998167  18.517167  18.119333
#> [157]  18.657333  21.494667  21.607667  18.470667  19.351833  18.665667
#> [163]  17.196667  16.438667  14.380333  13.440500  15.840333  16.342000