A generalized data filter for raws_timeseries objects to choose rows/cases where conditions are true. Multiple conditions are combined with & or separated by a comma. Only rows where the condition evaluates to TRUE are kept.Rows where the condition evaluates to NA are dropped.

raws_filter(rawsObject = NULL, ...)

Arguments

rawsObject

raws_timeseries object.

...

Logical predicates defined in terms of the variables in the rawsObject$data.

Value

A subset of the incoming raws_timeseries.

See also

Examples

# \donttest{
library(RAWSmet)

rawsObject <- example_cefa_Saddle_Mountain

daytime <- raws_filter(rawsObject, solarRadiation > 0)
head(daytime$data)
#> # A tibble: 6 × 12
#>   datetime            temperature humidity windSpeed windDirection maxGustSpeed
#>   <dttm>                    <dbl>    <dbl>     <dbl>         <dbl>        <dbl>
#> 1 2017-01-01 17:00:00       -5          97     0.894           127         1.79
#> 2 2017-01-01 18:00:00       -4.44       99     0.894           293         1.34
#> 3 2017-01-01 19:00:00       -2.78       99     1.79            273         2.24
#> 4 2017-01-01 20:00:00       -2.22       99     0.894           252         2.24
#> 5 2017-01-01 21:00:00       -2.22       99     0.894           212         1.34
#> 6 2017-01-01 22:00:00       -1.67       99     0.894           325         1.34
#> # ℹ 6 more variables: maxGustDirection <dbl>, precipitation <dbl>,
#> #   solarRadiation <dbl>, fuelMoisture <dbl>, fuelTemperature <chr>,
#> #   monitorType <chr>
# }